For the first time ever…

My blog has been dormant since early this year. During this period my husband went through four shoulder surgeries, and is now facing spine surgery. In a later post I’ll describe parts of all this which may be useful to others. But for now I am going to ease back into blogging with a short simple post.

As an older adult, I feel it’s not too often I do something for the first time ever. But Friday, while pursuing the sedentary pleasure of reading in the shade on our deck, I got to sit in the shade of trees I helped plant! And it felt good.

Over the years I have planted trees here and there, even sprouted acorns and popped them in the ground, knowing I would not be around to admire them when they got really big. I remember thinking once that I hoped someone somewhere was planting trees for me. Of course it’s true, “someone else” (including a host of squirrels, bluejays, and other animals which transport and hide seeds) has planted all the trees we gaze upon, eat the fruits of, and climb. But now, thanks to fast-growing seedlings from our two old birch trees, I sat in shade my husband and I had planted. It really did feel different, quite satisfying.

Birches make lots of little seeds which glide on the wind, sprouting wherever they encounter a moist spot. The slender trees now shading me started as little guys that I potted up to adorn the front deck; after a few years they outgrew their pots and were planted as a group. They’re prettier that way, and because the nature of birches, it takes several to make a sizable area of dappled shade.

Birches IMG 2160

We also have planted our own aspen grove, five that we bought in big pots, and they are doing well. Our hot dry summers and fast-draining soil (that’s a flattering term for it) aren’t ideal for either aspens or birch so I water them once or twice a week in the summer, and that seems to be enough.

Aspens IMG 2164

I always marvel when I see houses without any trees: no shade, no windbreak, no fruit, none of the other comforts that trees offer us.

If your surroundings are lacking in trees, don’t wait for Arbor Day next spring. Plant some this fall and they’ll be ready to grow in spring. Get some advice on what does well in your region (use natives as much as you can) and what fits your needs with regard to questions such as year-round shade or not, growth rate & eventual size, likes to be in a lawn or not, species that provide food for birds or butterflies, blooms or fall color, amount of leaves and seeds to be raked if that is an issue, and so on.

Look for nursery sales as they pare back their holdings before winter; you can get some good deals. Or, just start your own. Some trees are pretty easy to grow though you’ll wait longer to sit in their shade, of course. Willow cuttings will grow readily if they get water; acorns can just be pushed into the ground and some will grow. There’s an inspiring short tale (The Man Who Planted Trees, by Jean Giono) about a shepherd who over many years revivified a desolate area by planting acorns each day as he followed his sheep. It’s fiction, but full of truth. Tree roots help stop erosion, their leaves cause the rain to fall more gently promoting absorption by the soil, their shade cools streams for wildlife and shelters other seedlings, their flowers, leaves, and seeds are food for many animals, and their presence gives birds, insects, and mammals places to live, breed, and hunt.

Trees in fall color, surrounding Monticello

As Thomas Jefferson wrote, “I never before knew the full value of trees. My house is entirely embossomed [embosomed] in high plane-trees, with good grass below; and under them I breakfast, dine, write, read, and receive my company. What would I not give that the trees planted nearest round the house at Monticello were full grown. “ (in a letter to Martha Jefferson Randolph, July 7, 1793).

Two months before his death, at the age of eighty-three, he designed an arboretum for the University of Virginia. Such an epilogue to years of planting at Monticello was perhaps inspired by Jefferson’s own adage: “Too old to plant trees for my own gratification I shall do it for posterity.” (This and more about Jefferson and his tree-planting here; the aerial photo is of Monticello.)

6 things you should know when planting a tree, from Arbor Day Foundation

To which I add: Leave the soil at the bottom (that will be beneath the root ball) undisturbed to avoid settling. If the tree is bare-root, gently spread out the roots over a cone of soil. Don’t stake unless really necessary, for instance when planting on a slope. Finally, water it in, and water regularly for the first couple of years or more depending on your weather. More tips here.

Human germ attacks already declining coral reefs

Plague, rabies, Lyme disease, bird flu and swine flu—people seem much more at risk for diseases from animals than the other way around. But it does go the other way too, and it has been discovered that such a case is responsible for a disease that has devastated coral reefs in the Caribbean.

“White pox disease” in coral is caused by a human strain of the common intestinal bacterium Serratia marcescens, which causes the hospital infection serratiosis. (Hospital infections, or nosocomial infections, happen because individuals already in poor health are exposed to pathogens by poor sanitary practices and invasive procedures such as surgery or catheterization.) [Etymological notes on scientific names are at the end of the post.]

The only coral known to be affected is Elkhorn coral (Acropora palmata), a major reef-bulding species in the Caribbean. Healthy Elkhorn coral looks like this.

Healthy Elkhorn coral (Acropora palmata).jpg

Here’s an example of Elkhorn coral infected with White pox disease.

White Pox Disease (Serratia marcescens) on Elkhorn Coral.jpg

A research team at the University of Georgia was recently awarded a $5M grant to investigate the disease in coral, which is “the first known case of such a ‘reverse zoonosis’ that involves the transmission of a human pathogen to a marine invertebrate”. Even more remarkable, in the words of James W. Porter, associate dean of the Odum School of Ecology and the team’s leader, “This bacterium has jumped from vertebrate to invertebrate, from terrestrial to marine, and from anaerobic to aerobic environments. Triple jumps like this are rare.”

In addition, according to the report in ProMED (partly drawn from this source),

The scope of the team’s research will extend beyond gaining an
understanding of the impact of white pox disease on elkhorn coral and
how to counter it. The most likely source of the pathogen for coral
reefs is under-treated human sewage, so the study will also explore
the intersection of public health practices and environmental health
outcomes.

“This investigation addresses not only environmental protection, but
also the socio-ecological determinants of coastal zone protection,”
said Porter. “This includes the cost of wastewater treatment
infrastructure. Given a reliance on tourism by most Caribbean
countries, this study addresses a disease system that is of great
economic importance and public health concern to developing nations.”

“This is science in action to save an endangered species and a threatened ecosystem,” said team leader Porter. “We are linking good public health practices to effective environmental protection.”

Elkhorn and Staghorn coral (Acroporis cervicornis) are both on the US Federal list of threatened species, and in 2008 the National Oceanic and Atmospheric Administration extended additional protection rules usually reserved for endangered species. The new rule will “prohibit the importing, exporting and taking of elkhorn and staghorn corals. Additionally, the rule prohibits any activities that result in the corals’ mortality or injury. Anchoring, grounding a vessel or dragging gear on the species is prohibited. Additionally, damaging the species’ habitat and discharging any pollutant or contaminant that harms the species violates NOAA’s new rule. The rule applies to elkhorn and staghorn coral in the Virgin Islands, Puerto Rico and Florida.” Of course the enforcement will be difficult, but it appears that it’s none too soon to reverse the decline of these reef-building species.

A recent analysis of 500 surveys of 200 reefs showed the most complex types of reef had been virtually wiped out across the entire Caribbean. What survives are mostly “flattened” reefs which provide poor habitat for fish including commercial species, and are less “effective in protecting coastal homes and villages from storm swells and tidal surges”.

Healthy reef of staghorn coral in the Caribbean, below.

Healthy Staghorn coral (Acropora cervicornis).jpg

Source.

When the branched corals are killed off, low-growing corals may take their place but don’t create the rich three-dimensional habitat that the branched ones do. Algae also may increase and blanket surfaces, preventing coral growth.

Flattened coral reef, degraded by loss of branching coral).jpg

Source. Photo by Jennifer E. Smith.

Other threats to coral reefs

Coral-building animals live symbiotically with algae. Influenced by water that is too warm or cold, the corals will “expel the algae (zooxanthellae) living in their tissues causing the coral to turn completely white. This is called coral bleaching. When a coral bleaches, it is not dead. Corals can survive a bleaching event, but they are under more stress and are subject to mortality.” Rising ocean temperatures have caused wide-spread bleaching events. Warm waters also absorb more CO2, causing the water to become more acidic and that makes it more difficult for reef-building organisms to form the calcium carbon skeletons that serve as their structural basis.

Overfishing, pollution including sewage and agricultural runoff, dredging,hurricanes, and development have all damaged coral reefs. Each new injury reduces the ability of living organisms to reproduce and to withstand further assaults.

Coral reefs are among the world’s richest ecosystems, second only to tropical rain forests in plant and animal diversity. They arfe essential to fisheries, tourism, and protecting beaches from erosion. Yet “nearly two-thirds of the Caribbean’s coral reefs are threatened by human activities. Agricultural runoff, overfishing, dredging, sewage discharge (a factor in White pox disease), and the growing pace of coastal development have already degraded important reef systems, resulting not only in a tremendous loss of biodiversity but also lost revenue from declining tourism and fishing, and increased coastal erosion.” This last statement comes from the World Resources Institute, which is active many environmental fronts and is currently sponsoring a country-by-country survey of the economic values of Caribbean coral reefs and mangroves: “Supporting the sustainable management of coral reefs and mangroves by quantifying their economic value”.

Elkhorn coral & research robot.jpg

Source. Some breakage from hurricanes can be seen. Also shown is Fetch1, an autonomous underwater vehicle for research that was developed by NASA.

More about coral reefs

Global Coral Reef Alliance
EPA, Coral Reefs and your Coastal Watershed
University of Florida, Overview with photos

Etymological notes

Serratia marcescens was discovered in 1819 by Venetian pharmacist Bartolomeo Bizio, as the cause of an episode of blood-red discoloration of polenta in the city of Padua.[7] Bizio named the organism four years later in honor of Serafino Serrati, a physicist who developed an early steamboat; the epithet marcescens (Latin for “decaying”) was chosen because of the pigment’s rapid deterioration. [Wikipedia]

Acropora palmata: Acropora from the Greek, akros (high) and poros (opening, pore); palmata handlike, from Greek palma (a palm, flat hand; palm branch).

Acropora cervicornis: Acropora as above; cervicornis from the Latin cervus (deer) and cornu (horn, antler)

Biggest bug I was ever bitten by

One day this summer I was at the school where the food pantry is held, and a school landscape employee was spraying weeds. He called out in surprise, that there was a really big bug right on the nozzle of the herbicide applicator. I ran over to see and apparently was the only person willing to pick up this huge black beetle. I decided to take him home, since my husband is a beetle fancier, and rummaged around for some sort of container for him. Finally I found a kleenex box, emptied it, and with the help of a young girl gathered leaves and sticks to make a cozy temporary home. The little girl was scared of the beetle but her feelings toward him began to turn warm and nurturing when I invited her to help furnish his house. She hadn’t gotten up to touching him by the time we put him in and taped a piece of paper over the top, but given more time I feel sure she would have come around.

Here’s our prize, emerging from his house (all the furnishings got shaken to a corner by the car ride).

Ergates spiculatus Spined woodborer,emerges.jpg

He crawled on my arm and hand for a while and then I must have annoyed him because he bit me with his mandibles—made me jump! The bite made a 1/8 inch cut that did bleed, but alas left no scar for me to show off while admitting how I had completely deserved it. Below he’s on my husband’s arm.

Ergates spiculatus Spined woodborer - 15.jpg

And for better scale,

Ergates spiculatus Spined woodborer,4Scale.jpg

We were able to identify him as one of the longhorned woodboring beetles, the Spined Woodborer or Pine Sawyer Beetle (Ergates spiculatus). One clue to differentiating him from another similar species was the spininess of his thorax, visible in this photo. The spines are on the sides of his thorax, while the yellow arrows point to the palps which unfortunately are blurry in this picture.

Ergates spiculatus Spined woodborer Head.jpg

Here the palps are clearer.

Ergates spiculatus Spined woodborer palps.jpg

The palps are sensory organs for the beetle. Mandibles cut up food and maxilla help manipulate it. The parts of a beetle’s head are shown in this illustration.

Beetle head anatomy.jpg

After irritating this beetle so much, we stopped before getting any good photos of his underside, though we could see intriguing edges of fibrous stuff. Here’s someone else’s great picture of what the description says are “velvety” underparts. The eyes and two pairs of palps are also shown.

PaulBurnett'sPhoto.jpg

Etymological note: ergates is from the Greek, worker; spiculatus, from the Latin spiculum, a little sharp point (diminutive of spicum, a sharp point). The English word “spike” may derive from this Latin word, or may have a more indirect derivation; there is a Proto-Indo-European root *spei-, sharp point. [Proto-Indo-European is the common ancestor of all modern Indo-European languages. It dates from before writing, so it has been reconstructed from study of related words in various languages, and derivation of rules by which sounds change over time. The same method has been used to construct Proto-Germanic. In historical linguistic studies, the asterisk next to a “word” means that it is a reconstructed root.]

One site says this is the largest beetle in North America, up to 65 mm (2.6 inches) in length, but I could not confirm its status as champion big beetle. At any rate it is plenty large, and I wondered if it was one of those beetles, the larvae of which cause extensive die-off in our Pacific Northwest forests. A publication on wood-borers from Washington State University reassured me: “Keep in mind that almost all of our native species of long horned beetles feed in dying or stressed trees and do not attack healthy trees”. According to them, Ergates spiculatus feeds mostly on dead/dying/stressed Douglas firs or Ponderosa Pines.

That information has a different implication, however, at a time when climate change may be stressing northern forests with increased temperatures and long droughts, causing millions of trees to fall into that “stressed” category. British Columbia has reportedly lost about half of its pine trees to a borer no larger than a grain of rice, which spends most of its life boring beneath the bark, a process continued by its larvae which cut off the nutrient and water supply while feeding. To make matters worse, “The beetles also introduce a distinct blue stained fungus that holds back a tree’s natural defences against the attack, delivering a lethal larvae and fungus combination”.

Our trees look pretty good, though, so without hesitation we turned the big biting bug loose on one of them.

Ergates spiculatus Spined woodborer on tree.jpg

More about hydraulic mining, including some corrections

In an earlier post, about a walk along the Gin LinTrail, an area still scarred by hydraulic mining, I made errors that have been pointed out to me by a commenter on that post. I’ve made brief corrections to parts of my text in the original post, but will sort things out at more length here. On a couple of points, one trivial and the other important, I do differ with the commenter.

One error arose from my ignorance of the geological nature of the area where the hydraulic mining was done and the source of the gold. The commenter’s reference to Tertiary gravel deposits being the location of the gold was new to me, so I looked it up and learned a lot about the Northern California (and, I assume, extreme southern Oregon) hydraulic gold-mining industry.

The gold mined by hydraulic mining in Northern California was found accumulated in ancient “riverbed deposits, now elevated above modern rivers”. These deposits are 40 million years old, or older. So the hydraulickers, as they were sometimes called, were following a very old plane of deposited material across a large area which has since been raised, and also cut into, by modern geological forces such as uplift and water flow. The map below, from the UCSB Dept. of Geography, shows the location of those ancient rivers and their modern counterparts in one region of Northern California.

Map of ancient Northern California rivers which deposited gold and were mined by hydraulic miners.

”Pay streaks”, some ado about a phrase

With regard to the term “pay streaks”, of which the commenter said “A pay streak is a modern term used to describe a gold deposit that has formed in an existing waterway”, this term does in fact date back to the days of hydraulic mining and was used as I used it. For example, here is a passage from Hydraulic and placer mining by Eugene Benjamin Wilson (Wiley, 1918), page 8 (Google Books):

Pay Streak Quotation.jpg

It is easy to see how confusion may have arisen about this term’s early use, because of the change in meaning of another word: “placer”. Like other writers of his time and before, Wilson’s definition of “placer” is much more inclusive than what seems to be common usage today. We think of placer as meaning something deposited recently (in geological terms)

Placer definition.jpg

But Wilson and others of his era used it to refer not only to deposits in current rivers, but also to those made millions of years ago on riverbeds now under many feet of overburden.

placer quotation.jpg

(above, from Wilson page 11; below, from page 9) and

ancient&modern placers.jpg

His use of the the term “pay streaks” is in the half of his book about placer mining. For him, hydraulic mining is a method and placer describes a type of gold deposit including both recent and ancient riverbeds.

placer & hydraulic.jpg

(Wilson, page 152)

Another authoritative writer, Waldemar Lindgren, used “placer” in the same way (and “pay streak” also). In 1911 the U.S. Geological Survey published his opus, The Tertiary Gravels of the Sierra Nevada of California, as no. 73 in its series of Professional Papers. He says,

The occurrence of gold in paying quantities in the Tertiary gravels of the Sierra Nevada is limited almost entirely to the gravels in which quartz and metamorphic rocks form the principal components. …

DISTRIBUTION OF THE GOLD IN THE GRAVELS

It has become almost an axiom among miners that the gold is concentrated on the bedrock and all efforts in placer mining are generally directed toward finding the bedrock in order to pursue mining operations there. It is well known to all drift miners, however, that the gold is not equally distributed on the bedrock in the channels. The richest part forms a streak of irregular width referred to in the English colonies as the “run of gold” and in the United States as the “pay streak” or “pay lead.”
(Lindgren, p. 65-66)

Environmental effects of hydraulic mining

I blamed hydraulic mining for the unvegetated areas we saw along the Gin Lin Trail. The commenter blamed it upon poor soil in the areas of these ancient rivers, which he said was typical and something he has often observed. He said, “the deeper they were worked, the better the vegetation has recovered”.

The best description I found, in researching the revegetation of hydraulic mining sites, was this by Randall Rohe:

quote Rohe.jpg

(Source: Green versus gold: sources in California’s environmental history, by Carolyn Merchant. From the chapter by Randall Rohe, “Mining’s Impact on the land”, p. 128. Google books.)

So, all things being equal, the bottoms of hydraulic mining pits are most likely to revegetate quickly, while the slopes may remain bare for decades or centuries. However in some places the mining may result in contaminating the pit-bottom with minerals that are toxic to plants, such as seems to be the case here.

malakoff-diggins-pond-3.jpg

The photo above shows a pool of water devoid of any plants in or around it other than algae, in the area of the Malakoff Diggins—California’s largest hydraulic mine. (Source. Following photos are also of Malakoff Diggins.)

diggins-creekSM.jpg

Source.

Minerals exposed by hydraulic mining can leach out and, if toxic, make plant growth impossible. Here is a view of what appears to be an exposed peak of some mineral:

majestic-cliffsSM.jpg

Source.
The steep slopes in themselves, of course, also resist plant growth.

Malakoff UCSB.jpg

Source.

As far as the differences in soil quality, comparing ground above the ancient riverbeds (which would probably be what’s on the top area of the cliffs shown) versus that exposed by water cannons like this

monitor-in-digginsSM.jpg

Source.

who can say? Are the bottoms of mining pits often more lushly vegetated because water collects there (as long as no toxic minerals accumulate)? Do different species, of different habits, grow in the pits as opposed to at the tops, and so growth appears different? My guess would be that it varies greatly according to specific location. Perhaps someone can point me to comparative photos or soil studies.

For the people downstream of these mines, the major consideration was what it did to their own locale. All the material washed away by the powerful streams of water—strong enough to hold a fifty-pound boulder in the air—went downstream sooner or later. Often the debris included boulders, cobbles, gravel, as well as finer material.

“The historian Hubert Howe Bancroft stated that an eight-inch Monitor [patented nozzle] could throw 185,000 cubic feet of water in an hour with a velocity of 150 feet per second.” (Source)

“A conservative estimate places the amount of debris dumped into tributaries of the Sacramento at 1.3 billion cubic yards.” (p. 132, article by Rohe in Green versus Gold previously cited). The total amount of material removed to build the Panama Canal (including both the French and the American work) was 268,000,000 cubic yards: only one-fifth the amount that was sent down the tributaries of the Sacramento.

The massive volume of debris that resulted from hydraulic mining clogged streams and rivers from the foothill outlets to the mouth of San Francisco Bay, obstructing navigable rivers and reducing their ability to carry flood waters. The lighter silt and sands, the “slickins”, spread over the river-side farms of the Sacramento Valley and ruined many farmers. These downstream impacts of the industry eventually brought on a series of local, then federal, lawsuits, and a series of debates in the California Legislature on how (or if) the problem would be solved. The end of debate came in 1884, when federal circuit judge Lorenzo Sawyer issued an injunction against the industry discharging its debris.

Source.

Many of the streams are turned out of their original channels, either directly for mining purposes, or in consequence of the great masses of soil and gravel that come down from the gold-washing above. Thousands of acres of fine land along their banks are ruined forever by the deposits of this character. A farmer may have his whole estate turned into a barren waste by a flood of sand and gravel from some hydraulic mining up stream; more, if a fine orchard or garden stands in the way of the working of a rich gulch or bank, orchard or garden must go. Then the tornout, dug- out, washed to pieces and then washed over side- hills, masses that have been or are being subjected to the hydraulics of the miners, are the very devil’s chaos indeed. The country is full of them among the mining districts of the Sierra Nevada, and they are truly a terrible blot upon the face of Nature. (Samuel Bowles, 1868.

It raised the level of rivers in some cases above the level of nearby towns, changed river-courses, silted up fish spawning gravels, reduced open water areas and increased tidal flats in San Francisco Bay and environs, and led to increasingly serious floods.

An invisible hazard accompanied the debris and silt-laden water: mercury. The gold-bearing material was sent down thousands of feet of sluices which were lined with mercury in order to snag particles of gold as they tumbled through. Mercury is very persistent in the environment. An estimated 2500 – 10,000 metric tons (2755 to 11,000 tons) entered the Bay. “Currently San Francisco Bay is listed under Clean Water Act Section 303(d) as impaired for mercury contamination, and many Bay-caught sport fish exceed the EPA human health criterion of 0.3 mg methylmercury/kg fish tissue” (Source). About 261 million cubic yards of sediment still remain in the northern part of San Francisco Bay.

When all is said and done

I went past the subject of the original commentator’s remarks (about seeing better vegetation in the bottoms of mining pits than on the presumably undisturbed top ground), to recapitulate some of the horrors of hydraulic mining, and that was not so I could bash him with matters not part of our differences, but because we must still fight against similarly great environmental damage from other mining practices. Strip mining, destruction of mountain tops, chemical “fracking” of strata to get at natural gas deposits, the list goes on and on.

Close to home, hydraulic mining’s little brother has come to visit. The recent moratorium on dredging in California has sent hundreds of miners with gas-powered dredges up to Southern Oregon, to suck up the banks and bottoms of streams in a small scale version of hydraulic mining. Small scale, but then our rivers and creeks are smaller too. The damage to the “stream banks and nursery gravels”, as one local gold panner wrote, is severe. “If you did a bio-survey of say, one cubic foot of stream gravel passed through a internal combustion driven pump, the numbers of ruptured organisms and caddis-fly eggs, water-beetle eggs, dragonfly larva, newt and salamander eggs would stagger one’s imagination. Just check a sluiced site for life forms sometime; see if you can find any. …The dredger’s assertion that their comparative damage is lesser than that of the major extractors doesn’t mitigate their injury.” (Pers. comm., Dan Barker, 2010).