Beyond Harvey Weinstein

When are we going to stop thinking about rights in regard to this group today (women) and that group (say, male actors harassed sexually by male executives) tomorrow?

Yes, some groups suffer more from certain kinds of harassment than others do, and sometimes specific legal protections are imperative. But must we work our way through each kind of discrimination with every conceivable group? There really isn’t time for that. How about generalizing it to two rules:

  • Respect the rights of other human beings in your words and actions. Insults and vicious gossip are cruel. Zip your lip, walk away.
  • Obey the law, which establishes minimal standards that are usually pretty clear. Assault is illegal. Compelling someone to submit to unwanted sexual activity is illegal.

No need then to teach your children, or yourself, to be kind & respectful to people who are a different color/religion/gender/nationality/political party, who support a different team or speak English with a regional or foreign accent, who are richer or poorer than you, more or less educated than you…See what I mean? The list of differences goes on forever. Cut the crap, be civil and compassionate to everybody. You can still disagree with them but you don’t get to insult them or assault them. Can you live with that?

[My last post was 3 years ago almost. If you are curious why, the “Speak, nosleepingdogs!” page, on the black menu bar above, explains.

More about hydraulic mining, including some corrections

In an earlier post, about a walk along the Gin LinTrail, an area still scarred by hydraulic mining, I made errors that have been pointed out to me by a commenter on that post. I’ve made brief corrections to parts of my text in the original post, but will sort things out at more length here. On a couple of points, one trivial and the other important, I do differ with the commenter.

One error arose from my ignorance of the geological nature of the area where the hydraulic mining was done and the source of the gold. The commenter’s reference to Tertiary gravel deposits being the location of the gold was new to me, so I looked it up and learned a lot about the Northern California (and, I assume, extreme southern Oregon) hydraulic gold-mining industry.

The gold mined by hydraulic mining in Northern California was found accumulated in ancient “riverbed deposits, now elevated above modern rivers”. These deposits are 40 million years old, or older. So the hydraulickers, as they were sometimes called, were following a very old plane of deposited material across a large area which has since been raised, and also cut into, by modern geological forces such as uplift and water flow. The map below, from the UCSB Dept. of Geography, shows the location of those ancient rivers and their modern counterparts in one region of Northern California.

Map of ancient Northern California rivers which deposited gold and were mined by hydraulic miners.

”Pay streaks”, some ado about a phrase

With regard to the term “pay streaks”, of which the commenter said “A pay streak is a modern term used to describe a gold deposit that has formed in an existing waterway”, this term does in fact date back to the days of hydraulic mining and was used as I used it. For example, here is a passage from Hydraulic and placer mining by Eugene Benjamin Wilson (Wiley, 1918), page 8 (Google Books):

Pay Streak Quotation.jpg

It is easy to see how confusion may have arisen about this term’s early use, because of the change in meaning of another word: “placer”. Like other writers of his time and before, Wilson’s definition of “placer” is much more inclusive than what seems to be common usage today. We think of placer as meaning something deposited recently (in geological terms)

Placer definition.jpg

But Wilson and others of his era used it to refer not only to deposits in current rivers, but also to those made millions of years ago on riverbeds now under many feet of overburden.

placer quotation.jpg

(above, from Wilson page 11; below, from page 9) and

ancient&modern placers.jpg

His use of the the term “pay streaks” is in the half of his book about placer mining. For him, hydraulic mining is a method and placer describes a type of gold deposit including both recent and ancient riverbeds.

placer & hydraulic.jpg

(Wilson, page 152)

Another authoritative writer, Waldemar Lindgren, used “placer” in the same way (and “pay streak” also). In 1911 the U.S. Geological Survey published his opus, The Tertiary Gravels of the Sierra Nevada of California, as no. 73 in its series of Professional Papers. He says,

The occurrence of gold in paying quantities in the Tertiary gravels of the Sierra Nevada is limited almost entirely to the gravels in which quartz and metamorphic rocks form the principal components. …

DISTRIBUTION OF THE GOLD IN THE GRAVELS

It has become almost an axiom among miners that the gold is concentrated on the bedrock and all efforts in placer mining are generally directed toward finding the bedrock in order to pursue mining operations there. It is well known to all drift miners, however, that the gold is not equally distributed on the bedrock in the channels. The richest part forms a streak of irregular width referred to in the English colonies as the “run of gold” and in the United States as the “pay streak” or “pay lead.”
(Lindgren, p. 65-66)

Environmental effects of hydraulic mining

I blamed hydraulic mining for the unvegetated areas we saw along the Gin Lin Trail. The commenter blamed it upon poor soil in the areas of these ancient rivers, which he said was typical and something he has often observed. He said, “the deeper they were worked, the better the vegetation has recovered”.

The best description I found, in researching the revegetation of hydraulic mining sites, was this by Randall Rohe:

quote Rohe.jpg

(Source: Green versus gold: sources in California’s environmental history, by Carolyn Merchant. From the chapter by Randall Rohe, “Mining’s Impact on the land”, p. 128. Google books.)

So, all things being equal, the bottoms of hydraulic mining pits are most likely to revegetate quickly, while the slopes may remain bare for decades or centuries. However in some places the mining may result in contaminating the pit-bottom with minerals that are toxic to plants, such as seems to be the case here.

malakoff-diggins-pond-3.jpg

The photo above shows a pool of water devoid of any plants in or around it other than algae, in the area of the Malakoff Diggins—California’s largest hydraulic mine. (Source. Following photos are also of Malakoff Diggins.)

diggins-creekSM.jpg

Source.

Minerals exposed by hydraulic mining can leach out and, if toxic, make plant growth impossible. Here is a view of what appears to be an exposed peak of some mineral:

majestic-cliffsSM.jpg

Source.
The steep slopes in themselves, of course, also resist plant growth.

Malakoff UCSB.jpg

Source.

As far as the differences in soil quality, comparing ground above the ancient riverbeds (which would probably be what’s on the top area of the cliffs shown) versus that exposed by water cannons like this

monitor-in-digginsSM.jpg

Source.

who can say? Are the bottoms of mining pits often more lushly vegetated because water collects there (as long as no toxic minerals accumulate)? Do different species, of different habits, grow in the pits as opposed to at the tops, and so growth appears different? My guess would be that it varies greatly according to specific location. Perhaps someone can point me to comparative photos or soil studies.

For the people downstream of these mines, the major consideration was what it did to their own locale. All the material washed away by the powerful streams of water—strong enough to hold a fifty-pound boulder in the air—went downstream sooner or later. Often the debris included boulders, cobbles, gravel, as well as finer material.

“The historian Hubert Howe Bancroft stated that an eight-inch Monitor [patented nozzle] could throw 185,000 cubic feet of water in an hour with a velocity of 150 feet per second.” (Source)

“A conservative estimate places the amount of debris dumped into tributaries of the Sacramento at 1.3 billion cubic yards.” (p. 132, article by Rohe in Green versus Gold previously cited). The total amount of material removed to build the Panama Canal (including both the French and the American work) was 268,000,000 cubic yards: only one-fifth the amount that was sent down the tributaries of the Sacramento.

The massive volume of debris that resulted from hydraulic mining clogged streams and rivers from the foothill outlets to the mouth of San Francisco Bay, obstructing navigable rivers and reducing their ability to carry flood waters. The lighter silt and sands, the “slickins”, spread over the river-side farms of the Sacramento Valley and ruined many farmers. These downstream impacts of the industry eventually brought on a series of local, then federal, lawsuits, and a series of debates in the California Legislature on how (or if) the problem would be solved. The end of debate came in 1884, when federal circuit judge Lorenzo Sawyer issued an injunction against the industry discharging its debris.

Source.

Many of the streams are turned out of their original channels, either directly for mining purposes, or in consequence of the great masses of soil and gravel that come down from the gold-washing above. Thousands of acres of fine land along their banks are ruined forever by the deposits of this character. A farmer may have his whole estate turned into a barren waste by a flood of sand and gravel from some hydraulic mining up stream; more, if a fine orchard or garden stands in the way of the working of a rich gulch or bank, orchard or garden must go. Then the tornout, dug- out, washed to pieces and then washed over side- hills, masses that have been or are being subjected to the hydraulics of the miners, are the very devil’s chaos indeed. The country is full of them among the mining districts of the Sierra Nevada, and they are truly a terrible blot upon the face of Nature. (Samuel Bowles, 1868.

It raised the level of rivers in some cases above the level of nearby towns, changed river-courses, silted up fish spawning gravels, reduced open water areas and increased tidal flats in San Francisco Bay and environs, and led to increasingly serious floods.

An invisible hazard accompanied the debris and silt-laden water: mercury. The gold-bearing material was sent down thousands of feet of sluices which were lined with mercury in order to snag particles of gold as they tumbled through. Mercury is very persistent in the environment. An estimated 2500 – 10,000 metric tons (2755 to 11,000 tons) entered the Bay. “Currently San Francisco Bay is listed under Clean Water Act Section 303(d) as impaired for mercury contamination, and many Bay-caught sport fish exceed the EPA human health criterion of 0.3 mg methylmercury/kg fish tissue” (Source). About 261 million cubic yards of sediment still remain in the northern part of San Francisco Bay.

When all is said and done

I went past the subject of the original commentator’s remarks (about seeing better vegetation in the bottoms of mining pits than on the presumably undisturbed top ground), to recapitulate some of the horrors of hydraulic mining, and that was not so I could bash him with matters not part of our differences, but because we must still fight against similarly great environmental damage from other mining practices. Strip mining, destruction of mountain tops, chemical “fracking” of strata to get at natural gas deposits, the list goes on and on.

Close to home, hydraulic mining’s little brother has come to visit. The recent moratorium on dredging in California has sent hundreds of miners with gas-powered dredges up to Southern Oregon, to suck up the banks and bottoms of streams in a small scale version of hydraulic mining. Small scale, but then our rivers and creeks are smaller too. The damage to the “stream banks and nursery gravels”, as one local gold panner wrote, is severe. “If you did a bio-survey of say, one cubic foot of stream gravel passed through a internal combustion driven pump, the numbers of ruptured organisms and caddis-fly eggs, water-beetle eggs, dragonfly larva, newt and salamander eggs would stagger one’s imagination. Just check a sluiced site for life forms sometime; see if you can find any. …The dredger’s assertion that their comparative damage is lesser than that of the major extractors doesn’t mitigate their injury.” (Pers. comm., Dan Barker, 2010).

Algae poses threat to humans as well as animals

Health departments have been trying to inform swimmers and pet owners that they should avoid water with visible algae, since ingesting it can cause severe and sudden illness including convulsions or even death. In our state, three dogs died last year after swimming at a reservoir. One died before his owner could even get him to the car, another died on the way to the vet.

Now, a recent report in the ProMED health tracking network calls our attention to human risks that don’t involved either entering or drinking the algae-contaminated water.

One man, whose dog died after a swim in the lake, was hospitalized last week [week of 19 Jul 2010] after he gave the dog a bath. Within days, the 43-year-old man began having trouble walking and lost
feeling in his arms and feet.

“We weren’t swimming in the lake because it’s disgusting,” said the
victim’s wife, whose husband, is still having trouble with memory loss and fatigue. “Our dog was just covered in that sludge, and my husband washed him.” Washington Examiner, July 30, 2010.

According to one doctor treating the Ohio man, his neurological problems may be permanent. But he’s better off than his dog, who died despite having the algae washed off.

The algae are in the “blue-green algae” family, and are actually not algae but photosynthesizing bacteria, called cyanobacteria. Blooms, or overgrowths, in bodies of water (fresh or saltwater) are encouraged by temperature change and increases in nutrients, often from agricultural runoff into the water. The cyanobacteria, like some algae, make toxins harmful to fish and mammals. Humans have been aware of this mostly through being poisoned by eating shellfish, which concentrate the toxins. The familiar warnings about “red tides” and issuance of “shellfish advisories” result from these conditions.

While it has been known that skin contact with toxic algae could produce illness in humans, the severe results from relatively small exposure—simply washing an algae-slimed dog—seem to be worse than expected.

The lake in Ohio is Grand Lake St. Marys; it’s the largest inland lake in the state by area, but is extremely shallow, with an average depth of only 5 to 7 feet. This shallow lake warms up more, and doesn’t dilute the runoff of agricultural fertilizer and livestock waste as much as if it held more water. Recent algae blooms have killed so many catfish that crews were shovelling up the dead fish. With the lake surrounded by warning signs, the area’s $160 million tourism industry has declined, and a boat race that draws about 30,000 people in late August each year has been cancelled.

Some algae are harmless, but there are many different algae or bacteria that can produce dangerous levels of toxins when they bloom. Some are more harmful than others but it’s foolish to take chances: keep yourself, and children and pets, well away from any water that has a visible algae presence. This can be greenish, reddish, or other colors. Or it can appear as just cloudiness or discoloration in the water, as foam or scum floating on top, as mats on the bottom, or actual filaments or pellets. And don’t let kids or pets wander to areas of a river, stream, or lake that you have not closely checked.

Algae by rocks.jpg

Source.

An Ohio factsheet sums up the methods of exposure, and known symptoms:

Skin contact: Contact with the skin may cause rashes, hives, or skin blisters (especially on the lips and under swimsuits).

Breathing of water droplets: Breathing aerosolizing (suspended water droplets-mist) from the lake water-related recreational activities and/or lawn irrigation can cause runny eyes and noses, a sore throat, asthma-like symptoms, or allergic reactions.

Swallowing water: Swallowing HAB-contaminated water can cause:
◦ Acute (immediate), severe diarrhea and vomiting
◦ Liver toxicity (abnormal liver function, abdominal pain, diarrhea and vomiting)
◦ Kidney toxicity
◦ Neurotoxicity (weakness, salivation, tingly fingers, numbness, dizziness, difficulties breathing, death)   Source.

Splashing of water in eyes, or inhaling droplets of contaminated water, can get the toxin into your system. One of the toxins from cyanobacteria, Saxitoxin is “reportedly one of the most toxic, non-protein substances known. It is known that the LD50 (median lethal dose) in mice is 8 micrograms/kilogram. Based on
a human weighing approx. 70 kg (154 lb), a lethal dose would be a
single dose of 0.2 mg.” [Source, ProMED report.]

How much is two-tenths of a milligram? There are a thousand milligrams in a gram, and a dime or a paper clip each weigh about 1 gram. So an amount of toxin weighing the same as two ten-thousandths of a paper clip may be lethal.

Algae,feet in water.jpg

Source.

These “Harmful Algal Blooms” can occur in large or small bodies of water; often, but not always, they are in areas where the waterflow is slow (near shore) or nonexistent (stagnant). Small pools or puddles separate from the main body of water can contain algal growth. Even in tiny amounts the toxins can have devastating and sudden effects of humans or animals.

Eating fish or shellfish from contaminated waters is dangerous too. Cooking does NOT render toxins safe.

Algal blooms can be very transient, appearing and disappearing in a matter of days to weeks. If you spot a possible instance and there are no warning signs, it may not have been found yet. Stay away from the water and call your local or state health department so they can track outbreaks, and put up signs.

For the state of Oregon, current advisories can be found online here. The HAB team can be reached by email at Hab.health@state.or.us, by phone: 971-673-0440; Toll Free: 877-290-6767; or by fax: 971-673-0457. Other states should have similar programs; your city or county health department ought to be able to tell you more.

Why are these toxic algae blooms becoming more common?

The short answer is, better growing conditions for algae. They thrive in warm water, and temperatures are going up. Nutrients (nitrogen and phosphorus) from human activities pour into streams, lakes, rivers, and the ocean, and act like Miracle-Gro for the algae. Sources include runoff from fields treated with fertilizer or manure, spraying partially treated sewage sludge, sewage overflows, and runoff from pastures.

What can be done?

Rising temperatures, that’s a big one. Let’s just look at eutrophication or over-nutrification of water, since that’s something where local efforts can have relatively immediate local effects. Obviously, better treatment of sewage (including livestock waste) and reduced use of fertilizers (in agriculture, on golf courses, in parks, and in our own personal yards) are important steps to work on. On July 1st, 16 states will begin enforcing laws that require dishwasher detergents to be almost phosphate-free. That’s a small but significant improvement; the legislator who introduced the bill into the Pennsylvania legislature estimated that 7% to 12% of the phosphorus entering sewage plants came from automatic dishwashing detergents. New guidelines from the federal Clean Water Act to reduce nitrogen and phosphorus have provided more impetus to these particular efforts.

Not so obvious steps:

At least one study found that use of organic fertilizers led to less nitrogen runoff than use of chemical fertilizers.

Remediation of areas where nitrogen is stored in soil, from decades of deposition by one means or another, is possible but expensive and slow.

And years of research is showing us, surprise surprise, that intact aquatic communities slow the trickle-down of nutrient pollution (from, say, creeks to streams to rivers to a lake) and seem to enable a body of water to better resist eutrophication. Dr. David Schindler (Professor of Biological Sciences, University of Alberta) has studied the problem for decades including 37 years of work on Lake 227, a small pristine lake in the Experimental Lakes region of northern Ontario. He says, for example, that overexploitation of piscivorous (fish-eating) fish seems to increase the effects of eutrophication. (His earlier work energized the campaign to reduce phosphorus pollution.)

A study along the Georgia coast suggests that tidal marsh soils protect aquatic ecosystems from eutrophication, caused by the accumulation of nutrients. And they sequester large amounts of carbon, helping us slow down climate change. I would expect similar results with regard to freshwater wetlands and marshes. When I was a zookeeper I worked with mechanical incubators for bird eggs, none of which was as reliable as one of those “bird-brained” hens of whatever species. We are told that the appropriate native herbivores—bison, wildebeest, and so on—produce more meat per acre and do less damage than introduced species like cattle. And now we’re coming around to seeing that oldmothernature is better at water purification than we are, if we leave existing systems intact (but we never do).

Salt Marsh.jpg

Salt Marsh near Dartmouth, Nova Scotia; more good photos of this marsh here.