Algae poses threat to humans as well as animals

Health departments have been trying to inform swimmers and pet owners that they should avoid water with visible algae, since ingesting it can cause severe and sudden illness including convulsions or even death. In our state, three dogs died last year after swimming at a reservoir. One died before his owner could even get him to the car, another died on the way to the vet.

Now, a recent report in the ProMED health tracking network calls our attention to human risks that don’t involved either entering or drinking the algae-contaminated water.

One man, whose dog died after a swim in the lake, was hospitalized last week [week of 19 Jul 2010] after he gave the dog a bath. Within days, the 43-year-old man began having trouble walking and lost
feeling in his arms and feet.

“We weren’t swimming in the lake because it’s disgusting,” said the
victim’s wife, whose husband, is still having trouble with memory loss and fatigue. “Our dog was just covered in that sludge, and my husband washed him.” Washington Examiner, July 30, 2010.

According to one doctor treating the Ohio man, his neurological problems may be permanent. But he’s better off than his dog, who died despite having the algae washed off.

The algae are in the “blue-green algae” family, and are actually not algae but photosynthesizing bacteria, called cyanobacteria. Blooms, or overgrowths, in bodies of water (fresh or saltwater) are encouraged by temperature change and increases in nutrients, often from agricultural runoff into the water. The cyanobacteria, like some algae, make toxins harmful to fish and mammals. Humans have been aware of this mostly through being poisoned by eating shellfish, which concentrate the toxins. The familiar warnings about “red tides” and issuance of “shellfish advisories” result from these conditions.

While it has been known that skin contact with toxic algae could produce illness in humans, the severe results from relatively small exposure—simply washing an algae-slimed dog—seem to be worse than expected.

The lake in Ohio is Grand Lake St. Marys; it’s the largest inland lake in the state by area, but is extremely shallow, with an average depth of only 5 to 7 feet. This shallow lake warms up more, and doesn’t dilute the runoff of agricultural fertilizer and livestock waste as much as if it held more water. Recent algae blooms have killed so many catfish that crews were shovelling up the dead fish. With the lake surrounded by warning signs, the area’s $160 million tourism industry has declined, and a boat race that draws about 30,000 people in late August each year has been cancelled.

Some algae are harmless, but there are many different algae or bacteria that can produce dangerous levels of toxins when they bloom. Some are more harmful than others but it’s foolish to take chances: keep yourself, and children and pets, well away from any water that has a visible algae presence. This can be greenish, reddish, or other colors. Or it can appear as just cloudiness or discoloration in the water, as foam or scum floating on top, as mats on the bottom, or actual filaments or pellets. And don’t let kids or pets wander to areas of a river, stream, or lake that you have not closely checked.

Algae by rocks.jpg

Source.

An Ohio factsheet sums up the methods of exposure, and known symptoms:

Skin contact: Contact with the skin may cause rashes, hives, or skin blisters (especially on the lips and under swimsuits).

Breathing of water droplets: Breathing aerosolizing (suspended water droplets-mist) from the lake water-related recreational activities and/or lawn irrigation can cause runny eyes and noses, a sore throat, asthma-like symptoms, or allergic reactions.

Swallowing water: Swallowing HAB-contaminated water can cause:
◦ Acute (immediate), severe diarrhea and vomiting
◦ Liver toxicity (abnormal liver function, abdominal pain, diarrhea and vomiting)
◦ Kidney toxicity
◦ Neurotoxicity (weakness, salivation, tingly fingers, numbness, dizziness, difficulties breathing, death)   Source.

Splashing of water in eyes, or inhaling droplets of contaminated water, can get the toxin into your system. One of the toxins from cyanobacteria, Saxitoxin is “reportedly one of the most toxic, non-protein substances known. It is known that the LD50 (median lethal dose) in mice is 8 micrograms/kilogram. Based on
a human weighing approx. 70 kg (154 lb), a lethal dose would be a
single dose of 0.2 mg.” [Source, ProMED report.]

How much is two-tenths of a milligram? There are a thousand milligrams in a gram, and a dime or a paper clip each weigh about 1 gram. So an amount of toxin weighing the same as two ten-thousandths of a paper clip may be lethal.

Algae,feet in water.jpg

Source.

These “Harmful Algal Blooms” can occur in large or small bodies of water; often, but not always, they are in areas where the waterflow is slow (near shore) or nonexistent (stagnant). Small pools or puddles separate from the main body of water can contain algal growth. Even in tiny amounts the toxins can have devastating and sudden effects of humans or animals.

Eating fish or shellfish from contaminated waters is dangerous too. Cooking does NOT render toxins safe.

Algal blooms can be very transient, appearing and disappearing in a matter of days to weeks. If you spot a possible instance and there are no warning signs, it may not have been found yet. Stay away from the water and call your local or state health department so they can track outbreaks, and put up signs.

For the state of Oregon, current advisories can be found online here. The HAB team can be reached by email at Hab.health@state.or.us, by phone: 971-673-0440; Toll Free: 877-290-6767; or by fax: 971-673-0457. Other states should have similar programs; your city or county health department ought to be able to tell you more.

Why are these toxic algae blooms becoming more common?

The short answer is, better growing conditions for algae. They thrive in warm water, and temperatures are going up. Nutrients (nitrogen and phosphorus) from human activities pour into streams, lakes, rivers, and the ocean, and act like Miracle-Gro for the algae. Sources include runoff from fields treated with fertilizer or manure, spraying partially treated sewage sludge, sewage overflows, and runoff from pastures.

What can be done?

Rising temperatures, that’s a big one. Let’s just look at eutrophication or over-nutrification of water, since that’s something where local efforts can have relatively immediate local effects. Obviously, better treatment of sewage (including livestock waste) and reduced use of fertilizers (in agriculture, on golf courses, in parks, and in our own personal yards) are important steps to work on. On July 1st, 16 states will begin enforcing laws that require dishwasher detergents to be almost phosphate-free. That’s a small but significant improvement; the legislator who introduced the bill into the Pennsylvania legislature estimated that 7% to 12% of the phosphorus entering sewage plants came from automatic dishwashing detergents. New guidelines from the federal Clean Water Act to reduce nitrogen and phosphorus have provided more impetus to these particular efforts.

Not so obvious steps:

At least one study found that use of organic fertilizers led to less nitrogen runoff than use of chemical fertilizers.

Remediation of areas where nitrogen is stored in soil, from decades of deposition by one means or another, is possible but expensive and slow.

And years of research is showing us, surprise surprise, that intact aquatic communities slow the trickle-down of nutrient pollution (from, say, creeks to streams to rivers to a lake) and seem to enable a body of water to better resist eutrophication. Dr. David Schindler (Professor of Biological Sciences, University of Alberta) has studied the problem for decades including 37 years of work on Lake 227, a small pristine lake in the Experimental Lakes region of northern Ontario. He says, for example, that overexploitation of piscivorous (fish-eating) fish seems to increase the effects of eutrophication. (His earlier work energized the campaign to reduce phosphorus pollution.)

A study along the Georgia coast suggests that tidal marsh soils protect aquatic ecosystems from eutrophication, caused by the accumulation of nutrients. And they sequester large amounts of carbon, helping us slow down climate change. I would expect similar results with regard to freshwater wetlands and marshes. When I was a zookeeper I worked with mechanical incubators for bird eggs, none of which was as reliable as one of those “bird-brained” hens of whatever species. We are told that the appropriate native herbivores—bison, wildebeest, and so on—produce more meat per acre and do less damage than introduced species like cattle. And now we’re coming around to seeing that oldmothernature is better at water purification than we are, if we leave existing systems intact (but we never do).

Salt Marsh.jpg

Salt Marsh near Dartmouth, Nova Scotia; more good photos of this marsh here.

Botanical prints of threatened flora

For those of us who find beauty in plant forms, the botanical illustrations available online are an always-blooming visual pleasure. Here are two that came my way via a mention in today’s Botany Photo of the Day.

First, a gallery of members’ works on the site of the The American Society of Botanical Artists, well worth a visit. There are only a couple of examples for each artist, but you can follow links to websites for many of those represented.

Ceanothus_spinosus.jpg
Detail, Mountain lilac or Greenbark ceanothus (Ceanothus spinosus), watercolor © Chris Chapman. Source [this is a frames page, click on artist’s name in list at side].

Also, the ASBA has made available online nearly all of a touring exhibition called Losing Paradise? Endangered Plants Here and Around the World.The exhibit is at The New York Botanical Garden through July 25 2010, and at the Smithsonian’s National Museum of Natural History in DC, August 14th through December 10th.

This ASBA blog has about thirty of the 44 artworks featured in the exhibition (another is added every few days), and each is accompanied by the text from the exhibit catalog: a description of the plant and its situation, and commentary from the artist. (Elsewhere, the ASBA also plans to post all 125 pieces that were submitted for the exhibit, with shorter text; only about a dozen are up now.)

Here are a few samples from the blog. The images on the page are thumbnails, be sure to look at the much larger versions.

PaintedTrillium.jpg

Detail of Painted trillium (Trillium undulatum), mixed media, © Anne Marie Carney, US.

Silene_regia.jpg

Detail of Royal catchfly (Silene regia), watercolor © Heeyoung Kim, US.

A perennial wildflower of the US Midwest; its bright red flowers are pollinated by butterflies and hummingbirds.

Marsh_gentian.jpg

Detail, Marsh gentian (Gentiana pneumonanthe), watercolor © Gillian Barlow, UK.

Marsh gentian is being studied all over northern Europe, mainly because of its fascinating relationship with the rare Alcon blue butterfly (Phengaris alcon). Adult Alcon blues lay their eggs on the outside of marsh gentian flowers, and when the larvae hatch, they emerge inside, where they begin to feed on the flower. After molting 3 times, these caterpillars chew through to the outside of the flower, then lower themselves to the ground on a “silken thread”. The caterpillar awaits the arrival of a Myrmica ant, which adopts it and carries it back to the ant’s nest. There it is fed by the ant colony through the fall and winter, growing quite large. In spring it forms a chrysalis, then emerges and exits the colony as quickly as it can to avoid being killed by the ants.

Actually, it’s even odder than that…

The larvae emit surface chemicals (allomones) that closely match those of ant larvae, causing the ants to carry the Alcon larvae into their nests and place them in their brood chambers, where they are fed by worker ants and where they devour ant larvae.

When the Alcon larva is fully developed it pupates. Once the adult hatches it must run the gauntlet of escaping. The ants recognise the butterfly to be an intruder, but when they go to attack it with their jaws they can’t grab anything substantial as the newly emerged adult butterfly is thickly clothed in loosely attached scales.

Over time, some ant colonies that are parasitized in this manner will slightly change their larva chemicals as a defense, leading to an evolutionary “arms race” between the two species.

The Phengaris alcon larvae are sought underground by the Ichneumon eumerus wasp. On detecting a P. alcon larva the wasp enters the nest and sprays a pheromone that causes the ants to attack each other. In the resulting confusion the wasp locates the butterfly larva and injects it with its eggs. On pupation, the wasp eggs hatch and consume the chrysalis from the inside. [Wikipedia]

Phengaris_alcon.jpg

Alcon blue butterfly (Phengaris alcon). Source.

Since the butterfly lays its eggs right on the flower, it may be serving the gentian as a pollinator, if it visits more than one plant.

Below, the Santa Cruz Cypress.

Santa_Cruz_Cypress.jpg

The endangered Santa Cruz Cypress, Cupressus abramsiana, is found only in the coastal Santa Cruz Mountains of central California, where it grows in gravelly, sandy soils above the fog belt, with chaparral and other evergreen species. This tree, once abundant, succumbed over the years to vineyard and home development, and road building. Only five populations totaling a few thousand individuals remain, all within a 15-mile stretch of the coast. It was Federally listed in 1987. It is still threatened by competition with non-native plants such as pampas grass and French broom, insect infestation and hybridization with other cypress species.

Visit the ASBA blogspot to see the rest of 30 or so. The catalog of the exhibit, from which these texts are excerpted, is on sale for $29.95 + s & h.

Unclear on the basic concept: White House Press Secretary on Gulf oil spill

As President Obama made his tour of the Gulf region on Monday, White House Deputy Press Secretary Bill Burton told reporters aboard Air Force One that BP would move forward in creating an escrow account to ensure, “that all the people who are affected by BP’s oil spill are made whole.”
from politicsdaily.com, June 14, 2010.

What kind of a disconnected nitwit can use the phrase “made whole” about this? Believe it or not, there are some things money can’t change. All the money in the world cannot turn back the clock and make the ocean clean, bring back to life the millions of dead creatures—the tiny ones we never see also suffered, also died, and from our myopic human standpoint they are important because they’re part of the web of life that makes shrimp for us to catch and eat.

This isn’t “just words”, this is a perversion of thinking that is at the root of our modern lostness. Minds so separated from the real “buzzing blooming confusion” of life, that they are hardly here in the same world with the oiled pelicans and the devastated fishermen. Yet like aliens from some distant galaxy they walk among us and their power is immense, to act in our world, control what we know, run our government like a puppet theatre.

jellyfish.jpg

A dead jelly fish floats in oil in the Gulf of Mexico near Venice, LA. AP photo from Telegraph (UK).

hermitCrabs.jpg

Hermit crabs struggle to cross a patch of oil on a barrier island near East Grand Terre Island, LA. AP photo from Telegraph (UK).

Some penguins to be listed under Endangered Species Act

from the Penguin News site,

4 June 2010

Legal settlement will protect seven penguin species at risk from global warming and fisheries (USA)

A federal judge has approved a settlement that requires the US federal government to finalise protections for seven penguin species under the Endangered Species Act. The court-ordered settlement results from a lawsuit filed by the Center for Biological Diversity and Turtle Island Restoration Network challenging the Obama administration’s failure to finalise its determination that these penguins warrant Endangered Species Act protection due to threats from climate change and commercial fisheries.
Read Center for Biological Diversity press release

While this is a justified action, it’s not clear what the practical results might be. The polar bear was listed under the ESA in May 2008 because of habitat loss from global warming. Yet Bush’s Secretary of the Interior Dirk Kempthorne “made clear several times during a press conference announcing the department’s decision that, despite his acknowledgement that the polar bear’s sea ice habitat is melting due to global warming, the ESA will not be used as a tool for trying to regulate the greenhouse gas emissions blamed for creating climate change.” For the bears, listing could have potential benefits of changed regulations governing activities in US territory (such as oil drilling) but action would be based on the direct impact on the ground, not the contribution of oil and drilling to climate change.

Last year the Scientific American blog stated the effects of ESA listing for these species of penguin:

Why protect penguins under the ESA if they don’t live in the U.S. or its territories? “Listing of penguins under the ESA would make import or export of the species illegal without an ESA permit,” Ward says [US Fish and Wildlife Service public affairs specialist Tamara Ward]. “Such permits are issued only if an activity has a conservation benefit and it is hoped listing may help focus international attention on the species conservation needs.” In addition, according to the CBD [Center for Biological Diversity], listing would also require federal agencies to ensure that any action carried out, authorized or funded by the U.S. government would not jeopardize the continued existence of the protected species.

Major threats to penguin species include overfishing and climate change. The latter causes loss of ice on which some species nest, and changes in currents which move fish and other prey to new areas of the sea—sometimes so far offshore that penguin parents are hampered in bringing back fish to feed the young. Oilspills and introduced terrestrial predators (rats, dogs, feral cats) can have devastating local effects.

Realistically, I think it will take a much greater disaster than the Gulf Oil spill to provide the political will for effective action on climate change and the overfishing/pollution of the oceans. Piecemeal wildlife protection is sometimes valuable, and ESA listing has symbolic importance (perhaps little else in this case), but where, where, is the “place to stand” for moving the world on these huge issues?

Oiled penguins.jpg

African Penguins (Spheniscus demersus) oiled in a spill off the South African coast. Photo by Cape Times, Cape Town South Africa, from Penguin Conservation vol. 7(2).

LittleBlue.jpg

Little Blue Penguins (Eudyptula minor), at entrance to a nest burrow on Phillip Island, Australia. Photo by M. Kuhn, Creative Commons license.