So many flowers!
We’ve made two trips to Mt. Ashland (Southern Oregon), on July 22 and 31, along a gravel/dirt forest road noted for wildflowers, and it was a new experience: instead of marvelling at a single flower or small patch of flowers, we saw slopes red with Indian Paintbrush or Scarlet Gilia, places with a dozen different flowers blooming in a 50 foot stretch. On gentle slopes where the snow has recently melted, plants grow so thickly it’s hard to see which leaves belong to which flowers. This is Forest Road 20, for those who might want to visit, and it’s the continuation of the main paved road that goes to the Mt. Ashland ski area. Just keep going, and the road soon turns to gravel and there are meadows of wildflowers on each side. A few miles later the road winds into a drier area with few but choice species, such as various penstemons as well as paintbrush, gilia, eriogonum, and many more. For us novices, identifying what we’ve seen and photographed has been a challenge.
Here are some of the plants we’ve seen on these two trips. Others were included in the earlier “Part 1” post. [Our identifications are the best we have been able to do, but shouldn’t be considered authoritative.]

Castilleja (Paintbrush) along a trickle of water. Not sure of the species, but it doesn’t have the wavy leaves of C. applegatei.
Tiny wildflowers like this one are easy to overlook, hard to identify. For scale, that large pink object on the left is part of my finger. The entire plant was only two or three inches tall, and was growing in a wet sandy area.


The striking yellow lilies above are Leopard Lilies (Lilium pardalinum), native to Oregon and California. The spires of white flowers are White Schoenolirion or White Rush-lily (Hastingsia alba; also called Schoenolirion album).
[Etymological note: pardalinum is an adjective from the Greek pardalis, female leopard (meaning spotted like a leopard); Hastingsia after Serranus Clinton Hastings (1814-1893), first Chief Justice of the Supreme Court of California, who helped publish The Botany of the Pacific Coast edited by Asa Gray, Sir Joseph Hooker and J. D. Whitney; album and alba are from the Latin albus (white); Schoenolirion from the Greek schoinos (a rush), + lirion (lily).]

The White Rush-lily is in the lily family; it grows from a bulb, and has the flat strap-like leaves characteristic of many lilies. The mixed species of plants were so dense in some places on Mt. Ashland that it was hard even to find the foliage of a particular species, much less photograph it, but the picture below shows a big area where White Rush-lily alone grew.


A purple flower in the aster family, but which one? In the background is Achillea millefolium, Common Yarrow.
Out of the ordinary Owl’s Clover
Next is an unusual flower, Toothed Owl’s Clover (Orthocarpus cuspidatus). Owl’s Clovers are in the Snapdragon family along with Paintbrushes (Castilleja genus), Foxgloves, and Penstemons (Beardtongues). Because it is so remarkable, I’m going to include pictures of it from several points of view. From above, looking down on the upright flower.

Below, another top view of a rather different-looking individual, missing some of its parts or having developed differently.

Two views from the side.


Owl’s Clovers are not just unusual in appearance, but also in their natural history. They are annuals, and
if the first roots emerging from a germinating Owl Clover seed find themselves near the roots of a neighboring plant of a different species, such as prairie lupine, it will initiate structural connections called haustoria. These are modified roots capable of causing infection in the host plant.
The haustoria invade, literally grow into, the inner tissues of the host lupine’s roots. The Owl Clover haustoria are triggered into formation when the lupine itself exudes chemicals from its roots; that is, the lupine chemically signals its presence to the Owl Clover. The haustoria connections are all completed and in place within a few hours! With functional haustoria in place, Owl Clover’s growth is accelerated. The Owl Clover gains water, minerals and energy from the host plant. Being an annual, Owl Clover has a relatively small root system, so getting extra food really helps its growth rate. This host-parasite relationship is called heterotrophy, the opposite of autotrophy [self-sustaining by photosynthesis]. Being semi-parasitic [capable of both parasitism and if necessary autotrophy], Owl Clover may engage in both at the same time.
Owl Clover, when functioning as a parasite, also takes in toxic chemicals the host plant produces; lupines have alkaloids (remember, plants like lupines are poisonous to livestock). These toxic chemicals are distributed into the Owl Clover’s stem and leaf tissues. The consequences? The presence of the poisonous alkaloids, botanists have learned, reduces the level of feeding (herbivory) by butterfly and moth larvae that favor Owl Clover leaves for their growth and development. Larvae feeding is hindered by the presence of the poisons, and the Owl Clover retains more of its leaf tissue for photosynthesis, an obvious benefit. Butterfly and moth larvae need alternative leaves to eat, but that’s impossible since mature butterflies and moths lay their eggs on developing Owl Clover plants not knowing if the leaves are toxic or not. Larvae, it’s assumed, survive better, and develop to maturity by feeding on Owl Clovers that are not parasitizing a lupine or other toxic host plant.
There’s one remaining piece of this interesting relationship to be told: studies suggest that Owl Clover’s flower nectar is not contaminated by the toxic alkaloids. Perhaps the alkaloids are detoxified by some means before reaching the nectar glands. Why is this important? Visiting pollinators, such as hummingbirds or bumble bees, can harvest the Owl Clover’s nectar reward without suffering ill effects. [Source article by Jim Habeck, professor emeritus of botany at the University of Montana]
Representations of the seeds and seed-pods of wildflowers seem hard to find; after the colorful floral show is over, the photographers lose interest just as the pollinating bees and hawkmoths do. But in my Owl’s Clover wanderings I came across photos here of the seeds and pods of two species. Looking at the flowers, I wouldn’t have expected this:

Seeds and seedpod of Purple Owl’s Clover (Orthocarpus purpurascens, also called Castilleja exserta). Not the species we saw, but it has a similar flower so probably the seedpods are similar.
[Etymological note: Orthocarpus, from the Greek ortho (straight, upright) + carp- (fruit, seed); cuspidatus, from the Latin cuspis (lance, point); purpurescens, becoming purple, from the Latin purpura (purple); Castilleja, named for Domingo Castillejo (1744-1793), Spanish botanist and Professor of Botany in Cadiz, Spain; exserta, from the Latin exsertus, past participle of exserere (to thrust out, from ex- + serere to join).]
Wavy-leaf Paintbrush and hand signals

This, I think, is Wavy-leaf Paintbrush (Castilleja applegatei)

Here are the wavy-edged 3-lobed leaves. Some leaves are single, not lobed.

And this is my hand signal to tell myself that the flower felt “sticky”! I have found I have trouble remembering these things days later when I am looking over 300 photos, sometimes of more than one species of the same genus. Now which one had the sticky flowers? It’s characteristic of some Paintbrushes and not others, so knowing helps to identify these tricky guys.
Another difficulty was that if two similar species were photographed one after the other I couldn’t be sure where the first one ended, in the series of photos. Now when I finish photographing one species I take a “spacer” photo of my foot in its red sandal. Sounds odd but seems to be helping.
[Etymological note: Castilleja, named for Domingo Castillejo (1744-1793), Spanish botanist and Professor of Botany in Cadiz, Spain; applegatei, named after Elmer Applegate (1867-1949), a student of the flora of Oregon best known for his monograph of trout lilies (Erythronium).]
Thistle, Buckwheat, Roses and more

Above is a close-up of the center of a flat-growing thistle, called Elk Thistle (Cirsium scariosum). All our other local thistles send up tall stems defended with spiky leaves and ending in one or more flowers, but this one grows and flowers at a height of just 2 or 3 inches. The plants we saw were up to a foot in diameter.

[Etymological note: Cirsium from the Greek kirsion (a kind of thistle) in turn from kirsos (a swollen vein or welt) because thistles were often used as a remedy against such things; scariosum from “New Latin” (=concocted by moderns) scariosus c. 1806, origin uncertain (dry and membranous in texture, chaffy, brown).]

Sulphur-flower Buckwheat (Eriogonum umbellatum). The genus Eriogonum is in the same family (Polygonaceae) as the field crop buckwheat, and the seeds of some species are important for wildlife. The name ‘buckwheat’ or ‘beech wheat’ comes from its triangular seeds, which resemble the much larger seeds of the beech nut from the beech tree, and the fact that it is used like wheat [Wikipedia].

[Etymological note: Eriogonum, from the Greek erion (wool) and gony (knee or joint), so called because the jointed stems are covered with hair; umbellatum, from the Latin umbella (sunshade), diminutive of umbra (shadow), and refers to the arrangement of the flowers which arise in a head from a central point, i.e. bearing an umbel.] Now that I know this odd bit about the meaning of Eriogonum, I’ll be looking for those “hairy knees” on wild buckwheat plants in future.

Small patches of these vivid pink roses were blooming in areas of loose dry soil, and the plants were only a few inches tall. I think it’s Wood’s Rose (Rosa woodsii).
[Etymological note: Rosa, from the Latin rosa (rose), in turn derived from the Greek rhodon (rose); woodsii, after American botanist Alphonso Wood (1810-1881).]

We think this Penstemon is Azure Penstemon (Penstemon azureus). At their peak the flowers must have been glorious.

The broadly oval leaves are distinctive, and seem to clasp the stem as described for this species.
[Etymological note: Penstemon from Greek penta- (five) + Greek stēmōn (thread, here meaning stamen); azureus (of a deep blue color) from Arabic via Old French azaward which developed from Arabic lāzaward, from Persian lāzhuward, of obscure origin—in Old French the initial ‘l’ was dropped from the word proper and turned into the definite article “le” as if it were French: l’azaward].]
Here is a beautiful penstemon we are not able to identify.


The difference in flower color between these two pictures is due to light conditions; the one taken in full sunlight is actually a bit washed out compared to how the colors appeared to my eye, and the one taken in shade is more accurate.

The buds and long narrow leaves of this penstemon.
A second unidentified penstemon.

The leaves are quite different from the first unidentified one.

We saw many more flowers on these two trips, but I’ll stop with this one, Western Blue Flax or Prairie Flax (Linum lewisii, also called Linum perenne var. lewisii).

Western Blue Flax is very similar to the European Flax plant from which linen is made; indeed, some consider the two a single species, Linum perenne. Native American peoples used flax fiber for cordage and string, as well as for mats, snowshoes, fishing nets and baskets.

[Etymological note: Linum from Latin linum (flax, linen); lewisii, for Captain Meriwether Lewis (1774-1809) of the Lewis and Clark expedition of 1804-1806; perenne from Latin perennis (lasting through the year or years) from per- (through) + annus (year), botanical sense of “Remaining alive through a number of years”.]


View of Mt. Shasta from Mt. Ashland.